1,299 research outputs found

    Categorical, low-dimensional decomposition of human odor space with non-negative matrix factorization

    Get PDF
    Recent studies using Principal Components Analysis (PCA) support low-dimensional models of odor space, in which one or two dimensions - with hedonic valence featuring prominently - explain most odor variability. Here we use non-negative matrix factorization (NMF) - a nonlinear optimization method - to discover an alternative, reduced-dimensional representation of the Dravnieks odor database (144 odors x 146 descriptors). NMF is theoretically well-suited for these types of analyses, as odor profiling data is inherently non-negative (e.g. descriptors either apply, or do not). We divided the dataset into training and testing halves, and found that RMSD testing error attained a minimum for subspace choice of 25, motivating this as an upper bound for odor perceptual space dimensionality. More parsimonious representations were found by comparing reconstruction errors (fraction of unexplained variance) of NMF with reconstruction errors of PCA on scrambled data (PCAsd). For subspace sizes > 10, NMF error was indistinguishable from PCAsd error, indicating no gain in retaining more than 10 perceptual dimensions. As is typical of NMF basis sets, the 10 odor dimensions we obtain are sparse (only a small subset of the 146 descriptors apply), and categorical (represent a positive valued quality). Moreover, these 10 dimensions were near-orthogonal, with a mean angle of 73 degrees between all pairs of basis vectors. Investigating the distribution of odors in this 10-dimensional space, we find marked clustering (Figure 1), with each odor being well-defined by its membership in a single dimension, and to the exclusion of others. In ongoing work, we are using graph-kernel methods to define a rudimentary mapping between physicochemical features of odorants and the 10 descriptor dimensions

    Detection of metallic cobalt and chromium liver deposition following failed hip replacement using T2* and R2 magnetic resonance

    Get PDF
    BACKGROUND: Failed hip prostheses can cause elevated circulating cobalt and chromium levels, with rare reports of fatal systemic organ deposition, including cobalt cardiomyopathy. Although blood cobalt and chromium levels are easily measured, organ deposition is difficult to detect without invasive biopsy. The T2* magnetic resonance (MR) method is used to quantify tissue iron deposition, and plays an important role in the management of iron-loading conditions. Cobalt and chromium, like iron, also affect magnetism and are proposed MR contrast agents. CASE PRESENTATION: We describe a case of a 44-year-old male with a failed hip implant and very elevated blood cobalt and chromium levels. Despite normal cardiac MR findings, liver T2* and R2 values were abnormal, triggering tissue biopsy. Liver tissue analysis, including X-ray fluorescence, demonstrated heavy elemental cobalt and chromium deposition in macrophages, and no detectable iron. CONCLUSIONS: Our case demonstrates T2* and R2 quantification of liver metal deposition in a patient with a failed hip implant. Further work is needed to investigate the role of T2* and R2 MR in the detection of metal deposition from metal on metal hip prostheses

    Selenium hyperaccumulation offers protection from cell disruptor herbivores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se) hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators <it>Stanleya pinnata </it>and <it>Astragalus bisulcatus </it>against two cell disrupting herbivores, the western flower thrips (<it>Frankliniella occidentalis</it>) and the two-spotted spider mite (<it>Tetranychus urticae</it>).</p> <p>Results</p> <p><it>Astragalus bisulcatus </it>and <it>S. pinnata </it>with high Se concentrations (greater than 650 mg Se kg<sup>-1</sup>) were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg<sup>-1</sup>). Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se <it>A. bisulcatus </it>and <it>S. pinnata </it>plants rather than high-Se plants. Spider mite populations on <it>A. bisulcatus </it>decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize <it>A. bisulcatus </it>plants containing up to 200 mg Se kg<sup>-1 </sup>dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF) mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators.</p> <p>Conclusions</p> <p>This is the first reported study investigating the protective effect of hyperaccumulated Se against cell-disrupting herbivores. The finding that Se protected the two hyperaccumulator species from both cell disruptors lends further support to the elemental defense hypothesis and increases the number of herbivores and feeding modes against which Se has shown a protective effect. Because western flower thrips and two-spotted spider mites are widespread and economically important herbivores, the results from this study also have potential applications in agriculture or horticulture, and implications for the management of Se-rich crops.</p

    Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms

    Full text link
    About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.Comment: 3 figures, 1 tabl

    How will transitioning from cytology to HPV testing change the balance between the benefits and harms of cervical cancer screening? Estimates of the impact on cervical cancer, treatment rates and adverse obstetric outcomes in Australia, a high vaccination coverage country

    Get PDF
    Primary HPV screening enables earlier diagnosis of cervical lesions compared to cytology, however, its effect on the risk of treatment and adverse obstetric outcomes has not been extensively investigated. We estimated the cumulative lifetime risk (CLR) of cervical cancer and excisional treatment, and change in adverse obstetric outcomes in HPV unvaccinated women and cohorts offered vaccination (>70% coverage in 12-13 years) for the Australian cervical screening program. Two-yearly cytology screening (ages 18-69 years) was compared to 5-yearly primary HPV screening with partial genotyping for HPV16/18 (ages 25-74 years). A dynamic model of HPV transmission, vaccination, cervical screening and treatment for precancerous lesions was coupled with an individual-based simulation of obstetric complications. For cytology screening, the CLR of cervical cancer diagnosis, death and treatment was estimated to be 0.649%, 0.198% and 13.4% without vaccination and 0.182%, 0.056% and 6.8%, in vaccinated women, respectively. For HPV screening, relative reductions of 33% and 22% in cancer risk for unvaccinated and vaccinated women are predicted, respectively, compared to cytology. Without the implementation of vaccination, a 4% increase in treatment risk for HPV versus cytology screening would have been expected, implying a possible increase in pre-term delivery (PTD) and low birth weight (LBW) events of 19 to 35 and 14 to 37, respectively, per 100,000 unvaccinated women. However, in vaccinated women, treatment risk will decrease by 13%, potentially leading to 4 to 41 fewer PTD events and from 2 more to 52 fewer LBW events per 100,000 vaccinated women. In unvaccinated women in cohorts offered vaccination as 12-13 year olds, no change to lifetime treatment risk is expected with HPV screening. In unvaccinated women in cohorts offered vaccination as 12-13 year olds, no change to lifetime treatment risk is expected with HPV screening. HPV screening starting at age 25 in populations with high vaccination coverage, is therefore expected to both improve the benefits (further decrease risk of cervical cancer) and reduce the harms (reduce treatments and possible obstetric complications) associated with cervical cancer screening

    Identifying the Origins of Microstructural Defects Such as Cracking within Ni‐Rich NMC811 Cathode Particles for Lithium‐Ion Batteries

    Get PDF
    The next generation of automotive lithium‐ion batteries may employ NMC811 materials; however, defective particles are of significant interest due to their links to performance loss. Here, it is demonstrated that even before operation, on average, one‐third of NMC811 particles experience some form of defect, increasing in severity near the separator interface. It is determined that defective particles can be detected and quantified using low resolution imaging, presenting a significant improvement for material statistics. Fluorescence and diffraction data reveal that the variation of Mn content within the NMC particles may correlate to crystallographic disordering, indicating that the mobility and dissolution of Mn may be a key aspect of degradation during initial cycling. This, however, does not appear to correlate with the severity of particle cracking, which when analyzed at high spatial resolutions, reveals cracking structures similar to lower Ni content NMC, suggesting that the disconnection and separation of neighboring primary particles may be due to electrochemical expansion/contraction, exacerbated by other factors such as grain orientation that are inherent in such polycrystalline materials. These findings can guide research directions toward mitigating degradation at each respective length‐scale: electrode sheets, secondary and primary particles, and individual crystals, ultimately leading to improved automotive ranges and lifetimes

    A predictive score for retinopathy of prematurity in very low birth weight preterm infants

    Get PDF
    Aims This study describes the development of a score based on cumulative risk factors for the prediction of severe retinopathy of prematurity (ROP) comparing the performance of the score against the birth weight (BW) and gestational age (GA) in order to predict the onset of ROP.Methods A prospective cohort of preterm infants with BWp1500 g and/or GAp32 weeks was studied. the score was developed based on BW, GA, proportional weight gain from birth to the 6th week of life, use of oxygen in mechanical ventilation, and need for blood transfusions from birth to the 6th week of life. the score was established after linear regression, considering the impact of each variable on the occurrences of any stage and severe ROP. Receiver operating characteristic (ROC) curves were used to determine the best sensitivity and specificity values for the score. All variables were entered into an Excel spreadsheet (Microsoft) for practical use by ophthalmologists during screening sessions.Results the sample included 474 patients. the area under the ROC curve for the score was 0.77 and 0.88 to predict any stage and severe ROP, respectively. These values were significantly higher for the score than for BW (0.71) and GA (0.69) when measured separately.Conclusions ROPScore is an excellent index of neonatal risk factors for ROP, which is easy to record and more accurate than BW and GA to predict any stage ROP or severe ROP in preterm infants. the scoring system is simple enough to be routinely used by ophthalmologists during screening examination for detection of ROP. Eye (2012) 26, 400-406; doi: 10.1038/eye. 2011.334; published online 23 December 2011Hosp Clin Porto Alegre, Dept Ophthalmol, BR-90035903 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Dept Ophthalmol, Sch Med, Porto Alegre, RS, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, Sch Med, São Paulo, BrazilUniv Fed Rio Grande do Sul, Dept Paediat, Newborn Sect, Sch Med, Porto Alegre, RS, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, Sch Med, São Paulo, BrazilWeb of Scienc

    Intellectual Property in Medical Imaging and Informatics: The Independent Inventor’s Perspective

    Get PDF
    While innovation and new product development is traditionally thought of as the exclusive domain of industry and academia, a large number of innovations in medicine and information technology have come from independent inventors, which account for almost 30% of new patents issued in the U.S. today. A large number of economic, political, and legal challenges exist within the current marketplace that serves as relative impediments to independent invention. This article explores the existing challenges facing the independent inventor and offers a number of recommendations and resources to facilitate independent inventors in their quest for innovation and entrepreneurship. The concept of “outsourcing innovation” is discussed as an alternative to the existing model of industry sponsored research and development (R&D), with the goal of combining the unique attributes and strengths of independent inventors and industry sponsors

    Myocardial Perfusion Defects in Hypertrophic Cardiomyopathy Mutation Carriers

    Get PDF
    Background Impaired myocardial blood flow (MBF) in the absence of epicardial coronary disease is a feature of hypertrophic cardiomyopathy (HCM). Although most evident in hypertrophied or scarred segments, reduced MBF can occur in apparently normal segments. We hypothesized that impaired MBF and myocardial perfusion reserve, quantified using perfusion mapping cardiac magnetic resonance, might occur in the absence of overt left ventricular hypertrophy (LVH) and late gadolinium enhancement, in mutation carriers without LVH criteria for HCM (genotype-positive, left ventricular hypertrophy-negative). Methods and Results A single center, case-control study investigated MBF and myocardial perfusion reserve (the ratio of MBF at stress:rest), along with other pre-phenotypic features of HCM. Individuals with genotype-positive, left ventricular hypertrophy-negative (n=50) with likely pathogenic/pathogenic variants and no evidence of LVH, and matched controls (n=28) underwent cardiac magnetic resonance. Cardiac magnetic resonance identified LVH-fulfilling criteria for HCM in 5 patients who were excluded. Individuals with genotype-positive, left ventricular hypertrophy-negative had longer indexed anterior mitral valve leaflet length (12.52±2.1 versus 11.55±1.6 mm/m2, P=0.03), lower left ventricular end-systolic volume (21.0±6.9 versus 26.7±6.2 mm/m2, P≤0.005) and higher left ventricular ejection fraction (71.9±5.5 versus 65.8±4.4%, P≤0.005). Maximum wall thickness was not significantly different (9.03±1.95 versus 8.37±1.2 mm, P=0.075), and no subject had significant late gadolinium enhancement (minor right ventricle‒insertion point late gadolinium enhancement only). Perfusion mapping demonstrated visual perfusion defects in 9 (20%) carriers versus 0 controls (P=0.011). These were almost all septal or near right ventricle insertion points. Globally, myocardial perfusion reserve was lower in carriers (2.77±0.83 versus 3.24±0.63, P=0.009), with a subendocardial:subepicardial myocardial perfusion reserve gradient (2.55±0.75 versus 3.2±0.65, P=<0.005; 3.01±0.96 versus 3.47±0.75, P=0.026) but equivalent MBF (2.75±0.82 versus 2.65±0.69 mL/g per min, P=0.826). Conclusions Regional and global impaired myocardial perfusion can occur in HCM mutation carriers, in the absence of significant hypertrophy or scarring
    corecore